// ------------------------------- // // -------- Start of File -------- // // ------------------------------- // // ----------------------------------------------------------- // // C++ Source Code File Name: gxbtree.cpp // Compiler Used: MSVC, BCC32, GCC, HPUX aCC, SOLARIS CC // Produced By: DataReel Software Development Team // File Creation Date: 08/22/2000 // Date Last Modified: 06/17/2016 // Copyright (c) 2001-2024 DataReel Software Development // ----------------------------------------------------------- // // ------------- Program Description and Details ------------- // // ----------------------------------------------------------- // /* This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Dictionary example program using the gxBtree cache functions. */ // ----------------------------------------------------------- // #include "gxdlcode.h" #if !defined (__USE_BTREE_CACHE__) int main() { return 0; } #else #if defined (__USE_ANSI_CPP__) // Use the ANSI Standard C++ library #include <iostream> using namespace std; // Use unqualified names for Standard C++ library #else // Use the old iostream library by default #include <iostream.h> #endif // __USE_ANSI_CPP__ #include <string.h> #include <time.h> #include "gxbtree.h" #include "dfileb.h" #include "ustring.h" #include "leaktest.h" const BtreeNodeOrder_t MyKeyClassOrder = 100; const __WORD__ MyKeyNameSize = 54; const int num_buckets = 3000; class MyKeyClass : public DatabaseKeyB { public: MyKeyClass(); MyKeyClass(const char *name); void operator=(const char *name); ~MyKeyClass() { } public: // Base class interface size_t KeySize() { return sizeof(key_name); } #ifndef __USE_SINGLE_COMPARE__ int operator==(const DatabaseKeyB& key) const; int operator>(const DatabaseKeyB& key) const; #else int CompareKey(const DatabaseKeyB& key) const; #endif public: // Persistent data member char key_name[MyKeyNameSize]; }; MyKeyClass::MyKeyClass() : DatabaseKeyB((char *)key_name) { for(int i = 0; i < MyKeyNameSize; i++) key_name[i] = 0; } MyKeyClass::MyKeyClass(const char *name) : DatabaseKeyB((char *)key_name) { strncpy(key_name, name, MyKeyNameSize); key_name[ MyKeyNameSize-1] = 0; // Ensure null termination } void MyKeyClass::operator=(const char *name) { strncpy(key_name, name, MyKeyNameSize); key_name[ MyKeyNameSize-1] = 0; // Ensure null termination } #ifndef __USE_SINGLE_COMPARE__ int MyKeyClass::operator==(const DatabaseKeyB& key) const { const MyKeyClass *kptr = (const MyKeyClass *)(&key); return (strcmp(key_name, (char *)kptr->db_key) == 0); } int MyKeyClass::operator>(const DatabaseKeyB& key) const { const MyKeyClass *kptr = (const MyKeyClass *)(&key); return (strcmp(key_name, (char *)kptr->db_key) > 0); } #else int MyKeyClass::CompareKey(const DatabaseKeyB& key) const { const MyKeyClass *kptr = (const MyKeyClass *)(&key); return strcmp(key_name, (char *)kptr->db_key); } #endif // __USE_SINGLE_COMPARE__ void PausePrg() { cout << "\n"; cout << "Press enter to continue..." << "\n"; cin.get(); } void BtreeStatus(gxBtree &btx) { UString intbuf; cout << "\n"; intbuf << clear << btx.Root(); cout << "Root address = " << intbuf.c_str() << "\n"; cout << "Number of trees = " << btx.NumTrees() << "\n"; cout << "Number of entries = " << btx.NumKeys() << "\n"; cout << "Number of nodes = " << btx.NumNodes() << "\n"; cout << "B-tree order = " << btx.NodeOrder() << "\n"; cout << "B-tree height = " << btx.BtreeHeight() << "\n"; PausePrg(); } void BtreeCacheStats(BtreeCache &btree_cache) { cout << "\n"; cout << "--------- Cache tuning statistics ---------" << "\n"; cout << "Number of dirty buckets = " << btree_cache.BucketsInUse() << "\n"; cout << "Number of disk reads = " << btree_cache.uncached_reads << "\n"; cout << "Number of cached reads = " << btree_cache.cached_reads << "\n"; PausePrg(); } int ParseString(char *srt, char words[255][255], int*numwords, char sepchar) // General purpose string parser { int i = 0; char newword[255]; *numwords = 0; // First skip over leading blanks. Stop if an ASCII NULL is seen while (1) { if (*srt == '\0') return 0; if (*srt != ' ') break; srt++; } while(1) { // Check to see if there is room for another word in the array if(*numwords == 255) return 1; i = 0; while (i < 254) { if(*srt == 0 || *srt == sepchar) break; newword[i] = *srt; srt++; i++; } newword[i] = 0; // Ensure an ASCII null at end of newword. strcpy (words[*numwords], newword); // Install into array (*numwords)++; // If stopped by an ASCII NULL above, exit loop if(*srt == 0) break; srt++; if(*srt == 0) break; } return 0; } int ImportTextFile(gxBtree &btx, char *fname) { cout << "\n"; cout << "Importing a dictionary file." << "\n"; cout << "NOTE: Words must be delimited by a space or forward slash (/)" << "\n"; int status, num, key_count = 0; char words[255][255]; const int MaxLine = 255; char LineBuffer[MaxLine]; const char dchar = '/'; // Text delimiter cout << "\n"; cout << "Opening dictionary text file" << "\n"; DiskFileB infile(fname); if(!infile) { // Could not open the istream cout << "Could not open file: " << fname << "\n"; return 1; } cout << "Adding words..." << "\n"; // Get CPU clock cycles before entering loop clock_t begin = clock(); MyKeyClass key; MyKeyClass compare_key; BtreeCache btree_cache(num_buckets, &btx); if(!btree_cache) { cout << "Error constructing the B-tree cache object" << "\n"; return 1; } while(!infile.df_EOF()) { if(infile.df_GetLine(LineBuffer, df_MAX_LINE_LENGTH, '\n', 1) != DiskFileB::df_NO_ERROR) { break; // Error reading from the disk file } if(strcmp(LineBuffer, "") == 0) continue; if(ParseString(LineBuffer, words, &num, dchar) == 1) { return 1; } key = LineBuffer; // Cached insertion method status = btx.Insert(key, compare_key, &btree_cache); if (status != 1) { cout << "\n" << "Problem adding " << words[0] << "\n"; cout << btx.DatabaseExceptionMessage() << "\n"; return 1; } else { key_count++; } } // Get CPU clock cycles after loop is completed clock_t end =clock(); // Calculate the elapsed time in seconds. double elapsed_time = (double)(end - begin) / CLOCKS_PER_SEC; cout.precision(3); cout << "Added " << key_count << " words in " << elapsed_time << " seconds" << "\n"; BtreeCacheStats(btree_cache); // Rewind the file infile.df_Rewind(); cout << "Verifying the entries using a sort order search..." << "\n"; begin = clock(); key_count = 0; double search_time = 0; // Cache node used for optimized sort order searches BtreeCacheNode curr_node(btree_cache); while(!infile.df_EOF()) { if(infile.df_GetLine(LineBuffer, df_MAX_LINE_LENGTH, '\n', 1) != DiskFileB::df_NO_ERROR) { break; // Error reading from the disk file } if(strcmp(LineBuffer, "") == 0) continue; if(ParseString(LineBuffer, words, &num, dchar) == 1) { return 1; } key = LineBuffer; clock_t begin_search = clock(); // status = btx.Find(key, compare_key, &btree_cache); status = btx.Find(key, compare_key, curr_node); clock_t end_search = clock(); search_time += (double)(end_search - begin_search) / CLOCKS_PER_SEC; if (status != 1) { cout << "\n" << "Problem finding " << words[0] << "\n"; cout << btx.DatabaseExceptionMessage() << "\n"; return 1; } else { key_count++; } } end =clock(); elapsed_time = (double)(end - begin) / CLOCKS_PER_SEC; cout.precision(3); cout << "Verified " << key_count << " words in " << elapsed_time << " seconds" << "\n"; double avg_search_time = (search_time/(double)key_count) * 1000; cout << "Average search time = " << avg_search_time << " milliseconds" << "\n"; BtreeCacheStats(btree_cache); cout << "Verifying the entries using a find next sort order search..." << "\n"; begin = clock(); key_count = 0; btx.ResetStats(); // Reset the B-tree tuning statistics if(btx.FindFirst(key, curr_node)) { key_count++; while(btx.FindNext(key, compare_key, curr_node)) { key_count++; } } else { cout << "\n" << "Problem finding first key" << "\n"; cout << btx.DatabaseExceptionMessage() << "\n"; return 1; } end =clock(); elapsed_time = (double)(end - begin) / CLOCKS_PER_SEC; cout.precision(3); cout << "Verified " << key_count << " words in " << elapsed_time << " seconds" << "\n"; BtreeCacheStats(btree_cache); cout << "Verifying the entries using a find prev sort order search..." << "\n"; begin = clock(); key_count = 0; btx.ResetStats(); // Reset the B-tree tuning statistics if(btx.FindLast(key, curr_node)) { key_count++; while(btx.FindPrev(key, compare_key, curr_node)) { key_count++; } } else { cout << "\n" << "Problem finding last key" << "\n"; cout << btx.DatabaseExceptionMessage() << "\n"; return 1; } end =clock(); elapsed_time = (double)(end - begin) / CLOCKS_PER_SEC; cout.precision(3); cout << "Verified " << key_count << " words in " << elapsed_time << " seconds" << "\n"; BtreeCacheStats(btree_cache); // Rewind the file infile.df_Rewind(); cout << "Deleting the entries..." << "\n"; begin = clock(); key_count = 0; while(!infile.df_EOF()) { if(infile.df_GetLine(LineBuffer, df_MAX_LINE_LENGTH, '\n', 1) != DiskFileB::df_NO_ERROR) { break; // Error reading from the disk file } if(strcmp(LineBuffer, "") == 0) continue; key = LineBuffer; // Balanced delete function // status = btx.Delete(key, compare_key, &btree_cache); status = btx.FastDelete(key, compare_key, &btree_cache); if (status != 1) { cout << "\n" << "Problem deleting " << words[0] << "\n"; cout << btx.DatabaseExceptionMessage() << "\n"; return 1; } else { key_count++; } } end =clock(); cout.precision(3); elapsed_time = (double)(end - begin) / CLOCKS_PER_SEC; cout << "Deleted " << key_count << " words in " << elapsed_time << " seconds" << "\n"; BtreeCacheStats(btree_cache); // Rewind the file infile.df_Rewind(); cout << "Re-inserting all the words..." << "\n"; key_count = 0; begin = clock(); while(!infile.df_EOF()) { if(infile.df_GetLine(LineBuffer, df_MAX_LINE_LENGTH, '\n', 1) != DiskFileB::df_NO_ERROR) { break; // Error reading from the disk file } if(strcmp(LineBuffer, "") == 0) continue; if(ParseString(LineBuffer, words, &num, dchar) == 1) { return 1; } key = LineBuffer; status = btx.Insert(key, compare_key, &btree_cache); if (status != 1) { cout << "\n" << "Problem adding " << words[0] << "\n"; cout << btx.DatabaseExceptionMessage() << "\n"; return 1; } else { key_count++; } } end =clock(); cout.precision(3); elapsed_time = (double)(end - begin) / CLOCKS_PER_SEC; cout << "Added " << key_count << " words in " << elapsed_time << " seconds" << "\n"; BtreeCacheStats(btree_cache); cout << "Flushing the B-tree cache" << "\n"; if(btree_cache.Flush() != gxDBASE_NO_ERROR) { cout << "Error flushing cache" << "\n"; } cout << "Flushing the B-tree header" << "\n"; btx.Flush(); infile.df_Close(); return 0; } int main(int argv, char **argc) { #ifdef __MSVC_DEBUG__ InitLeakTest(); #endif const char *fname = "testfile.btx"; // File name of this database char *dfile = "amerdict.txt"; // Default dictionary file char rev_letter = gxDatabaseRevisionLetter; // Set the default rev letter if(argv >= 2) { // Set a specified revision letter rev_letter = *argc[1]; if(rev_letter == '0') rev_letter = '\0'; // Valid rev letters are: // Rev 0 // Rev 'A' or 'a' // Rev 'B' or 'b' // Rev 'C' or 'c' // Rev 'D' or 'd' // Rev 'E' or 'e' // NOTE: The gxDatabase class will set invalid revision letters // to the version set by the gxDatabaseRevisionLetter constant. } if(argv == 3) dfile = argc[2]; // Use specified dictionary MyKeyClass key, kbuf; gxBtree btx(key, MyKeyClassOrder); // Create a new B-tree index with one tree btx.Create(fname, rev_letter); ImportTextFile(btx, dfile); cout << "Exiting..." << "\n"; return 0; } #endif // __USE_BTREE_CACHE__ // ----------------------------------------------------------- // // ------------------------------- // // --------- End of File --------- // // ------------------------------- //