// ------------------------------- // // -------- Start of File -------- // // ------------------------------- // // ----------------------------------------------------------- // // C++ Source Code File Name: testprog.cpp // Compiler Used: MSVC, BCC32, GCC, HPUX aCC, SOLARIS CC // Produced By: DataReel Software Development Team // File Creation Date: 08/22/2000 // Date Last Modified: 06/17/2016 // Copyright (c) 2001-2024 DataReel Software Development // ----------------------------------------------------------- // // ------------- Program Description and Details ------------- // // ----------------------------------------------------------- // /* This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA gxBtree cache test program used to test the insertion and deletion time of a large number of keys. */ // ----------------------------------------------------------- // #include "gxdlcode.h" #if !defined (__USE_BTREE_CACHE__) int main() { return 0; } #else #if defined (__USE_ANSI_CPP__) // Use the ANSI Standard C++ library #include <iostream> using namespace std; // Use unqualified names for Standard C++ library #else // Use the old iostream library by default #include <iostream.h> #endif // __USE_ANSI_CPP__ #include <time.h> #include "gxdstats.h" #include "gxbtree.h" #include "ustring.h" // Set the Btree order // const BtreeNodeOrder_t MyKeyClassOrder = 8; // const BtreeNodeOrder_t MyKeyClassOrder = 16; // const BtreeNodeOrder_t MyKeyClassOrder = 32; // const BtreeNodeOrder_t MyKeyClassOrder = 64; const BtreeNodeOrder_t MyKeyClassOrder = 128; // const BtreeNodeOrder_t MyKeyClassOrder = 256; // const BtreeNodeOrder_t MyKeyClassOrder = 1024; // Set the Btree cache size const int num_buckets = 1000; class MyKeyClass : public DatabaseKeyB { public: MyKeyClass() : DatabaseKeyB((char *)&data) { } MyKeyClass(gxUINT32 i) : DatabaseKeyB((char *)&data) { data = i; } public: // Base class interface size_t KeySize() { return sizeof(data); } int operator==(const DatabaseKeyB& key) const; int operator>(const DatabaseKeyB& key) const; // NOTE: This comparison function is only used if the // __USE_SINGLE_COMPARE__ preprocessor directive is // defined when the program is compiled. int CompareKey(const DatabaseKeyB& key) const; public: // Persistent data member gxUINT32 data; }; int MyKeyClass::operator==(const DatabaseKeyB& key) const { const MyKeyClass *kptr = (const MyKeyClass *)(&key); return data == *((gxUINT32 *)kptr->db_key); } int MyKeyClass::operator>(const DatabaseKeyB& key) const { const MyKeyClass *kptr = (const MyKeyClass *)(&key); return data > *((gxUINT32 *)kptr->db_key); } int MyKeyClass::CompareKey(const DatabaseKeyB& key) const // NOTE: This comparison function is only used if the // __USE_SINGLE_COMPARE__ preprocessor directive is // defined when the program is compiled. { const MyKeyClass *kptr = (const MyKeyClass *)(&key); if(data == *((gxUINT32 *)kptr->db_key)) return 0; if(data > *((gxUINT32 *)kptr->db_key)) return 1; return -1; } void PausePrg() { cout << "\n"; cout << "Press enter to continue..." << "\n"; cin.get(); } void BtreeStatus(gxBtree &btx) { UString intbuf; cout << "\n"; intbuf << clear << btx.Root(); cout << "Root address = " << intbuf.c_str() << "\n"; cout << "Number of trees = " << btx.NumTrees() << "\n"; cout << "Number of entries = " << btx.NumKeys() << "\n"; cout << "Number of nodes = " << btx.NumNodes() << "\n"; cout << "B-tree order = " << btx.NodeOrder() << "\n"; cout << "B-tree height = " << btx.BtreeHeight() << "\n"; cout << "\n"; } void BtreeCacheStats(BtreeCache &btree_cache) { cout << "\n"; cout << "--------- Cache tuning statistics ---------" << "\n"; cout << "Number of dirty buckets = " << btree_cache.BucketsInUse() << "\n"; cout << "Number of disk reads = " << btree_cache.uncached_reads << "\n"; cout << "Number of cached reads = " << btree_cache.cached_reads << "\n"; cout << "\n"; } void BuildTree(gxBtree &btx) { // Adjust this number to set the number of insertions const unsigned long INSERTIONS = 1 * 1000; // 1K test // const unsigned long INSERTIONS = 10 * 1000; // 10K test // const unsigned long INSERTIONS = 100 * 1000; // 100K test // const unsigned long INSERTIONS = 1000 * 1000; // 1MEG test // const unsigned long INSERTIONS = 10000 * 1000; // 10MEG test // const unsigned long INSERTIONS = 100000 * 1000; // 100MEG test // const unsigned long INSERTIONS = 1000000 * 1000; // 1GIG test // const unsigned long INSERTIONS = 2000000 * 1000; // 2GIG test MyKeyClass key; MyKeyClass compare_key; cout << "Inserting " << INSERTIONS << " keys..." << "\n"; const int echo_results = 1; unsigned long i, key_count = 0; unsigned long curr_count = 0; int rv; int verify_deletions = 0; // Set to true to verify all deletions double insert_time = 0; BtreeCache btree_cache(num_buckets, &btx); if(!btree_cache) { cout << "Error constructing the B-tree cache object" << "\n"; return; } // Get CPU clock cycles before entering loop clock_t begin = clock(); for(i = 0; i < INSERTIONS; i++) { key.data = i; clock_t begin_insert = clock(); // Cached insertion method rv = btx.Insert(key, compare_key, &btree_cache); clock_t end_insert = clock(); insert_time += (double)(end_insert - begin_insert) / CLOCKS_PER_SEC; key_count++; curr_count++; if(rv != 1) { cout << "\n" << "Problem adding key - " << i << "\n"; cout << btx.DatabaseExceptionMessage() << "\n"; return; } if(curr_count == 10000) { // Optimize the cache by flushing the LRU buckets btree_cache.LRUFlush(1000); if(echo_results == 1) { curr_count = 0; cout << "Inserted " << i << " keys in " << insert_time << " seconds" << "\n"; } } } // Get CPU clock cycles after loop is completed clock_t end =clock(); // Calculate the elapsed time in seconds. double elapsed_time = (double)(end - begin) / CLOCKS_PER_SEC; cout.precision(3); cout << "Inserted " << key_count << " values in " << elapsed_time << " seconds" << "\n"; double avg_insert_time = (insert_time/(double)key_count) * 1000; cout << "Average insert time = " << avg_insert_time << " milliseconds" << "\n"; BtreeCacheStats(btree_cache); key_count = 0; double search_time = 0; cout << "Verifying the insertions..." << "\n"; // Cached node used for optimized sort order searches BtreeCacheNode curr_node(btree_cache); begin = clock(); for(i = 0; i < INSERTIONS; i++) { key.data = i; clock_t begin_search = clock(); // Optimized sort order search. rv = btx.Find(key, compare_key, curr_node); clock_t end_search = clock(); key_count++; search_time += (double)(end_search - begin_search) / CLOCKS_PER_SEC; if(rv != 1) { cout << "Error finding key - " << i << "\n"; cout << btx.DatabaseExceptionMessage() << "\n"; return; } } end = clock(); elapsed_time = (double)(end - begin) / CLOCKS_PER_SEC; cout.precision(3); cout << "Verified " << key_count << " values in " << elapsed_time << " seconds" << "\n"; double avg_search_time = (search_time/(double)key_count) * 1000; cout << "Average search time = " << avg_search_time << " milliseconds" << "\n"; BtreeCacheStats(btree_cache); cout << "Verifying the entries using a find next sort order search..." << "\n"; begin = clock(); key_count = 0; // Walk through the tree starting at the first node if(btx.FindFirst(key, curr_node)) { key_count++; while(btx.FindNext(key, compare_key, curr_node)) { key_count++; } } else { cout << "\n" << "Problem finding first key" << "\n"; cout << btx.DatabaseExceptionMessage() << "\n"; return; } end =clock(); elapsed_time = (double)(end - begin) / CLOCKS_PER_SEC; cout.precision(3); cout << "Verified " << key_count << " words in " << elapsed_time << " seconds" << "\n"; BtreeCacheStats(btree_cache); cout << "Verifying the entries using a find prev sort order search..." << "\n"; begin = clock(); key_count = 0; // Walk through the tree starting at the last node if(btx.FindLast(key, curr_node)) { key_count++; while(btx.FindPrev(key, compare_key, curr_node)) { key_count++; } } else { cout << "\n" << "Problem finding last key" << "\n"; cout << btx.DatabaseExceptionMessage() << "\n"; return; } end = clock(); elapsed_time = (double)(end - begin) / CLOCKS_PER_SEC; cout.precision(3); cout << "Verified " << key_count << " words in " << elapsed_time << " seconds" << "\n"; BtreeCacheStats(btree_cache); cout << "Deleting all the entries..." << "\n"; key_count = 0; double delete_time = 0; begin = clock(); for(i = 0; i < INSERTIONS; i++) { key.data = i; clock_t begin_delete = clock(); rv = btx.Delete(key, compare_key, &btree_cache); // rv = btx.FastDelete(key, compare_key, &btree_cache); clock_t end_delete = clock(); delete_time += (double)(end_delete - begin_delete) / CLOCKS_PER_SEC; key_count++; if(rv != 1) { cout << "Error deleting key - " << i << "\n"; return; } if(verify_deletions) { // Verify the remaining key locations for(unsigned long j = INSERTIONS-1; j != i; j--) { key.data = j; rv = btx.Find(key, compare_key, 0); if(rv != 1) { cout << "Error finding key - " << j << "\n"; cout << "After deleting key - " << i << "\n"; cout << btx.DatabaseExceptionMessage() << "\n"; return; } } } } end =clock(); cout.precision(3); elapsed_time = (double)(end - begin) / CLOCKS_PER_SEC; cout << "Deleted " << key_count << " values in " << elapsed_time << " seconds" << "\n"; double avg_delete_time = (delete_time/(double)key_count) * 1000; cout << "Average delete time = " << avg_delete_time << " milliseconds" << "\n"; cout << "\n"; cout << "Re-inserting " << INSERTIONS << " keys..." << "\n"; key_count = 0; insert_time = 0; begin = clock(); for(i = 0; i < INSERTIONS; i++) { key.data = i; clock_t begin_insert = clock(); rv = btx.Insert(key, compare_key, &btree_cache); clock_t end_insert = clock(); insert_time += (double)(end_insert - begin_insert) / CLOCKS_PER_SEC; key_count++; curr_count++; if(curr_count == 10000) { // Optimize the cache by flushing the LRU buckets btree_cache.LRUFlush(1000); } if(rv != 1) { cout << "\n" << "Problem adding key - " << i << "\n"; cout << btx.DatabaseExceptionMessage() << "\n"; return; } } end =clock(); elapsed_time = (double)(end - begin) / CLOCKS_PER_SEC; cout.precision(3); cout << "Inserted " << key_count << " values in " << elapsed_time << " seconds" << "\n"; avg_insert_time = (insert_time/(double)key_count) * 1000; cout << "Average insert time = " << avg_insert_time << " milliseconds" << "\n"; } int main(int argv, char **argc) { const char *fname = "testfile.btx"; // File name of this database char rev_letter = gxDatabaseRevisionLetter; // Set the default rev letter if(argv == 2) { // Set a specified revision letter rev_letter = *argc[1]; if(rev_letter == '0') rev_letter = '\0'; // Valid rev letters are: // Rev 0 // Rev 'A' or 'a' // Rev 'B' or 'b' // Rev 'C' or 'c' // Rev 'D' or 'd' // Rev 'E' or 'e' // NOTE: The gxDatabase class will set invalid revision letters // the version set by the gxDatabaseRevisionLetter constant. } MyKeyClass key, compare_key; gxBtree btx(key, MyKeyClassOrder); // Create a new Btree index file btx.Create(fname, rev_letter); if(CheckError(btx.gxDatabasePtr()) != 0) return 1; // Build the Btree BuildTree(btx); cout << "\n"; cout << "Exiting..." << "\n"; return 0; } #endif // __USE_BTREE_CACHE__ // ----------------------------------------------------------- // // ------------------------------- // // --------- End of File --------- // // ------------------------------- //